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Abstract

A numerical method is developed for calculat-
ing the flow field due to a two-dimensional dis-
tribution of vorticity over a given area. A dis-~
tribution of vorticity over a long thin ellipse is
then used to model the flow about the unrolled
cross-section of a thick wake far downstream of
the wing trailing-edge. The distribution is now
allowed to distort under the action of its own
induced velocity field, (which is calculated by th
aforementioned numerical method), thus simulating
roll-up of a wake with thickness. The influence
of viscosity is neglected and two different span
loadings are studied.

List of symbols

A,A' wake cross-sections at a general sta-
tion x and at x = O, respectively.

AR aspect ratio of wing.

a,b,c sides of triangular element divided by
s - see Fig. 2.

c,c’ boundaries of cross-sections A and A'
respectively.

CL wing l%ft coefficient.

Kn = EpbA, .
total number of triangular elements in
wake cross-section. "

N number of different values of &, .

n number denoting a typical triangular
element.

P perimeter of S.

LpeXpiX,  see Equation (13) and Fig. 2.

] closed region with constant vorticity
distribution.

s, wing semi-span.

£ dimensionless time. See Fquation (4).

U free stream velocity.

ViurWn element influence functions. See Egs.
(L4) and (15).

v,w velocity components in the y and 2z

. dirsctions, respectively.

Wy - W is the non-dimensionalised down-
wasﬁ calculated in the Treffz plane for
an unrolled wake.

X,¥:2 system of coordinates - see Fig. 1.

By see Eg. (13) and Fig. 2.

up,Og see Eq. (13).

BA'BC see Eq. (13).

YA’YB see Eq. (13).

AAn area of nth triangular element.

* . N N
At dimensionless time step in numerical

integration.
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Israel.
* * . * *
Avn,Awn contributions to v and w from nth
triangular element.
€ thickness ratio of elliptic wake cross-
section.
S =y + iz.
CA'CB'CC z at corner A of nth element, etc.
-1 *
6 = cos L - *
-1
A = tan (dz /dy )C' .
£(x,y,z) vorticity distribution within A.
En constant value of ¢ in nth triangle.
&s constant value of § inside S.
wly) vorticity distribution within A'.
() denotes non-dimensional forms of variables

defined in Egs. (2)-(5) and (12).

I. Introduction

Many investigators have studied the rolling-
up of the vortex wake behind a wing of finite span.
The earliest step in this study was the work of
Kaden(l) who found an analytical solution for the
rolling-up with time of a semi-infinite, straight,
two-dimensional vortex sheet. This solution must
represent the situation very close to the edges
of a finite-gpan vortex sheet of zero thickness,
in two or three~dimensions, during the initial
stage of the rolling-up process. An important
result following from Kaden's work is that, from
the very onset of rolling~up, due to the infinite
velocity at the sheet edge, a spiral of near-axi-
symmetric form, with an infinite number of turns,
is established at the edge. This is a consequence
of the assumption of zero thickness for the sheet.

Westwater(z) considered a finite-span, zero-
thickness wake resulting from an elliptically-
loaded wing and assumed that the roll-up could
be treated as a two-dimensional time-dependent
process, where the configurations at successive
stages in time represent successively further
downstream sections of the wake, as fixed by the
forward speed of the wing multiplied by the time.
This approach is evidently suitable for wakes which
roll up relatively slowly far behind the wing,such
as are found with high-aspect~-ratio, unswept wings.
Westwater further simplified his calculations by
replacing the continuous vortex sheet by a rqw of
infinite line vortices. Clements and Maull ) have
recently used this technique for non-elliptic
span-loadings. Westwater's method is subject to
certain numerical difficulties which have been the
subject of a number of investigations. A particu-
larly careful recent rexiew and study of this
matter is due to Moore( ) who develops a method
for overcoming the problem.

The line-vortex method has been extended to
cover three~dimensional effects, such as those
of bound vorticity and the finite origin and
streamwise curvature of the trailing vortices, by
the use of the vortex-lattice procedure(5'6l718r9).
This leads to results applicable to low-aspect-
ratio and swept wings.



Recently an early method of Betz (10) for
approximately determining the fully-developed,
rolled-up vortex structure has been developed and
extended by a number of authors (11),(12) . ( 3)

This method makes use of a number of conservation
relationships between the core and the unrolled
sheet (not all of which are exact) and seems to
assume, implicitely, that the wake has no thickness.

The present work is an attempt to remove the
unrealistic features of the various earlier models,
namely zero wake thickness and vorticity concentra-
ed on lines,by assuming that the wake vorticity is
contained in 2 Layer of rfinite tnickness with some
plausible cross-sectional shape. The wake flow is
assumed to be two-dimensional and the rolling-up
is studied via the time-dependent development of
this model, exactly as in Westwater's work, so that
we deal with a slow rolling-up taking place far
behind the wing, once more. The introduction of
vorticity distributed continuously throughout the
wake cross-section enables us to obtain a more
acceptable picture of the initial rylling up phase
than the infinite spiral of Kaderx(l .

Having selected an appropriate wake cross-
section its area is divided into triangular
elements within each of which the vorticity is
assumed constant, and for which simple expressions
giving the velocity field have been derived (see
Section 3). The strength of the vorticity within
each triangle is determined using two assumptions:

(1) The vorticity is constant through the wake
thickness. This corresponds to an assump-
tion that the transverse velocity profile
within the wake is linear.

(2) The periphery of the wake is moving down-
wards with a velocity determined by span-
wise position and wing spanwise loading,
exactly as in ordinary wing-wake theory.

Assumption (1) can evidently be removed at
the cost of increasing the number of triangular
elements used.

Once the triangle strengths are found, the
network of points defining the wake is allowed to
distort with time under its self-induced velocity
field, using Euler integraticn. During this
process viscous dissipation is neglected, so that
the vorticity inside each triangle remains con-
stant, as will its area (due to continuity), even
though the shape changes.

Examples of the initial roll-up phase have
been calculated for three wakes of different thick-
nesses and elliptic cross-sections, subjected to
uniform downwash (corresponding to elliptic span-
wise loading). For the thickest of the three
(thickness ratio .06) the calculation was carried
on until about 80% of the original wake vorticity
was rollad up. Details and results are given
in Sections 5 and 7.

In Section 6 an example of an elliptic cross-
sectioned wake of thickness ratio .06, subject to
non-uniform downwash, (i.e. non-elliptic loading)
is given. The loading chosen is one of thg
examples calculated by Clements and Maull( Ywhich
yields two separate roll-up regions. The results
are discussed in Section 7 and the effects of
wake thickness on the secondary roll-up are shown
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to be very important.

II. The Mathematical Model

The mathematical model of the wake and the
notation are illustrated in Fig. 1.

AXES

FIG. 1 WAKE CROSS - SECTIONS &  SYSTEM OF

The unrolled wake cross-section A', whose
boundary is denoted by C', stretches between
y =-s and y = +s in the plane x = 0. At sub-
sequent stations x = x, the boundary is denoted by
C and the wake has a rolled up form of cross-sec-
tion A with vorticity distribution £(x,y,z) de-
termined by the original configuration of the wake
cross-section, the original vorticity distribution
within it, £(0,y,z), and the elapsed time x/U.
It is assumed that

£(0,y,2) = wly) (1)

corresponding to a linear variation with 2z of the
velocity, v, within the initial wake section, if
the wake is assumed thin.

We define dimensionless coordinates

y =L ; =2 2
s s
and since a typical velocity of the flow in the
wake cross-sectional plane is 2UC;/7.AR, we also
define dimensionless velocity components, time and
vorticity by

* TAR.V * TAR.W
v = s w =g (3)

2UCL 2UCL
t* ) 2CLx ' @

7.AR.s
LI w 7.AR, L A £ .AR.S
w ly) = 200 S, £ (t,y,z) = _EEE;__ . (5)
L

*
We assume that w or w is determined by
the boundary conditions:

* * * *
(a) w cosA - v sink = wI(y )cosA (6)
on C'
* *
where (dz /dy )C' = tani , and
* *2 *2 7
(b) «lv*2+w2 + 0 as:ly + 2 2w {7



* *
- wy(y ) 1is the non-dimensionalised downwash dis-
tripution in the Treffz plane as calculated from
tge usual unrolled thin-wake theory. For example,
w, = =1 for elliptic spanwise load distribution,
It is readily shown that, in the general form, wy
is dependent on the form of the spanwise loading

*

and y only (c.f. Reference 3).

It now follows that for a given initial wake
cross-section and spanwise loading, the velocities
v and w of a given fluid particle are funct-
jons of t* only, so that the subsequent non-
dimensional coordinates of the particles constitu-

ting the rolled wake are functions of t only,
determined by the differential equations
* * d* *
dy_ -yt dE Ly, (8)

The equations (8) are integrated numerically step
by step, starting from the initial configuration,
using Euler integration.

I} remains to determine the velocity field
(v , w) due to the distribution ¢§ within C.

III. The Velocity Field

At any value of x, the two-dimensional
velocity field, (v,w), is determined by integrat-
ing the effects of point vortices of strengths
£E(x,y.2)dy dz over the area of the wake cross-
section, A.

To facilitate the numerical calculations, A
is divided into a finite number of small straight-
sided triangular elements within each of which the
vaiue of & 1is assumed constant. We nocw find
expressions for Av; and Aw: due to a typical
element of this kind for points outside its
boundary, or approaching the boundary in a limiting
sense. This enables us to calculate v* and w*
for the assemblage of triangles at all the node
points of the triangular mesh, including internal
nodes of A, since such points may be regarded as
being inside infinitesimal cavities excluded from
all the adjacent triangles, and we calculate, in
effect, the principal value of the velocity
integral - which is precisely the required definit-
ion of this integral inside the vorticity dis-
tribution.

The velocity field outside any area $ con-
taining a constant vorticity distribution, g
may be written

R O B N
v - dw = 5o J THio—y -iz . (9)

1 1

Using Green's theorem, this may be converted to a
line integral around P, the perimeter of S:

s
Y ! >~ .
v - iw =3 JP in(f -y, - 1zl)dyl (10}

where

If (10) is applied to a typical triangle of
A, of area AA_. , vorticity distribution strength
gn énd vVertices defined by CA'CB'CC (Fig.2), we
obtain
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~iE AR, Y
AV -iAw_ = ~ { — tn(o-7_) +
{ - oo >
n n 7 (0 -Cy) (55-2,) A
t -z T -1
B C

4 e An(C~L,) + e ——in (=5 ) T

(CC-EB)(CA-CB) B (T5=50) (g=ic) C

(11)
4 and AA are both invariant with the motion
£8r an infiRitesimal triangle in incompressible
flow, the product £ AR, being the circulation
around the element.

°{y,2)
FIG.2 NOTATION FOR A TRIANGULAR
ELEMENT & A FIELD POINT
2 *
If we now write s AAn = AAn, then
WUSC, 4« 2UsC b
ZnAAn N ~5AR HnAAn ~ WAR Kn 12
and if {see Fig. 2)
= ia - = g, ... - 1y
z SpT ST,e ;i ¢ g srpe”t; I-f, sr.e
T e iaB _L" = i:‘C
LRTEA sce ; (C - sbhe
= iBc, _ i3y
CC oy sae ; CA T sce
CA-QC = sbelYA, QB-QC = sae''B
(13)
we obtain from (11)
%n,%a
A = —{= i S=q 0 2 1% St AR
v p tbc[51n(a e \B)anrA+1cos(a R aB)] +
B
— in(3-38 ~8 )¢ P p=8 =3 +
* [sin(3 8c LA)nan+hcos(a o A)]
fe
+ gg{Sln(Y—YA-YB)ian+Ycos(Y-YA-YB)]J =
* *
= hnvn(y , 0z ) (14)
3*-.1(_".:!3[ (a=v =~y _Yinr_-asin(o~-a -x_)1 +
Aw = cggleos(amy mag) inry —asin(amamay
s
—— - - iy -Rai imd -
+ ca[cos(B 5e pA)Lan Asin(g Be SA)] +
Te
+ -y - Y - i S 3 =
ab[cos(v Ya YB)Lan ysin{y-y, YB)},
* *
= ann(y P z) . (15)

Hence we have the approximations



* M * *

v &~ I KnVn(y ' 2 ) (16)
n=1

* ~ g * *

w = 3 ann(y ,2 ) (17)
n=1

IV. The Numerical Procedure

Because of the spanwise symmetry of the ini-
tial cross-section, A', and the assumption (1),the
M values of K, are dependent on a smaller number
of values of 5; ; say N. The boundary condition
(6) is now applied at N suitable node points on
the initial boundary A' (excluding the tip
points), using the expressions (16) and (17), with
unknown coefficients, K. = £phn + thus yielding
N linear equations for the £; and hence the K.
The equations (16) and (17) may now be used to
evaluate v and w* at all values of t*, once
the dimensionless coordinates of the triangles are
known. These are found step by step by numerical
integration of the equations (8) forward in time
t’, starting with the known initial set of tri-
angles within A'. The development of the wake .
roll-up is thus calculated step by step. The vy
coordinate of the "centroid" of vorticity of
one half of the wake is calculated at each step.
This should remain constant and provides
an accuracy check.

V. 1he Wake of Eliiptic Cross-Section Subject to
Uniform Downwash

In this case the equation of C' is

* *
S AL (18)
and *
Wy = - 1. (19)
Also *
tan X =+ —SX (20)

Jl - y*z—

The cross-section A' was divided into tri-
angular elements as shown in Figure 3. It was
found necessary to concentrate the triangles near
the tips. This was done as follcws: Firstly, a
basic set of spanwise stations was established
by using an even number of equal divisions of the
eccentric angle coordinate

- *
8 = cos ly (21)

across the span. Next, the segments at the tips
themselves were further subdivided into two equal
6 intervals and all resulting divisions were
then again subdivided into two for a specified
number of the segments, starting from the tips
and moving inboard. Using the horizontal dia-
meter of the ellipse as another division line,
triangles may then be filled in as shown in
Figure 3. E; is taken as constant over the four
triangles lying between any two vertical lines
(at the tip - over two triangles) and the same
value is taken for the symmetrically placed group
on the other half wake. In the illustration, the
spanwise subdivision ig 8 + 2 + 6, (8 basic divi-
sions + 2 extra at tips + 6 additional sub-
divisions from tips, inwards), the number of tri-
angles is 60 and the number of different values
of £, is 8. The points for applying the
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boundary condition are shown circled.
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FIG.3 LAYOUT OF ELEMENTS IN ELLIPTIC WAKE

An analytic solution -exists for the downward
moving elliptic cylinder, which corresponds to the
flow at t* = 0. The flow calculated by the present
method at t = O was compared to this for the
three cases considered namely,e = 0.4, 0.5 and
.06, In all these cases, a subdivision of
40 + 2 + 8 spanwise gave results for surface ve-
locity, total amount of vorticity in one half wake
and spanwise position of centroid, which were con-
sidered to compare adequately with the theoretical
values and this distribution of points was also
found to be just adequate for describing the spiral
structure of the core up to the times reached in
the calculations of the initial roll-up. During
the initial roll-up, the centroid position spanwise
remained constant to a high degree of accuracy for
the range covered (change not more than 1 part in
780) . The total times govered in the initial roll~
up calculations were t = .0128, .0160 and .0192
for the thickness ratios 0.4, 0.5 and 0.6,respecti~
vely.

The appearance of the tip region is shown for
various stages of this initial roll-up in Figures
4a and 4b for ¢ = .06 It should be noted, that to
clarify the inner detail of the spiral, the ver-
tical scale has been exaggerated in these figures.
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For € = 0.6 extended calculations were carried
out, reaching values of t beyond 1.3. However,
for the later stages of the calculation, the
accuracy,as indicated by the centroid position,
began to deteriorate seriously, so results are
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FIG.4b INITIAL DEVELOPMENT OF VORTEX-ELLIPTIC LOADING

only given here up to t* = 1.3. This matter is
discussed further in Section 7. 1In order to carry
out this calculation it was necessary to employ a

40 + 2 + 40 division of the wake. It was also found
possible (and necessary) to increase At* in stages
during the calculation. Thus, the calculation was
performed with At* equal to .0006 up to t*= .0192,
wiEh At equal to .0012 from .0192 till! .0576,

At equal to .0024 on till .]1344, At* equal to
.0048 up till .9024, and At equal to .00305 from
then until 1.000 (during this stage At* was
agjusted to reac& 1.000 in 32 steps). After

t" = 1.000, At” = ,00625 was used.

Results of this calculation are shown in Figs.
Sa and 5b and in Fig. 6 a graph of the fraction of
vorticity rolled-up at time ¥ is given for all
the calculations of this Section in comparison with
the results of Moore(4) and Kaden(l). A discussion
appears in Section 7.

VI. Wake of Elliptic Cross-Section Subject to a
Certain Non-Uniform Downwash Distribution

In reference 3, Clements and Maull examine a
number of non-elliptic span loadings (non-uniform
downwash distributions) by the point vortex methed.
For several of them it was found that a considerable
portion of the vorticity rolled-up into a second,
inboard,vortex in addition to the tip vortex, so
that the tip vortices were weaker than those of
the elliptic distribution for the same Cy; although
a certain penalty in induced drag, naturally, has
to be paid.

€=06

Cne of the distributions is, in the notation
of reference 3 (with a correction to a printing
error in the coefficient on the right hand side):

It = %{sinﬁ + ¢ sin 398); § = 10% (22)

An extended calculation was carried out by the
present technique for an € = .06 elliptic-cross~
sectioned wake, subject to the far-field downwash
produced by the legading (22}, with the object of
determining if the inboard vortex developed in the
same way.

Equations {(18) and (20), with € = .06, still
apply in this example, but now the far-field down-
wash is

* J2 sin59
TW =t LY ig S T
* *
=+ 1 + %%(1 - 12y 2, 16y 4). (23)

Results of this calculation are shown in Figs.
7a,7b, and 7c and a discussion appears in the next
Section.

VII Results and Discussion

For the elliptic-loading calculation the time
step At* was found to be a very critical para-
meter in the initial stages of the calculation.
Too small a value caused chaotic motion to appear
after a large number of steps had been taken to
cover the initial period of high distortion ag the
wake tip. On the other hand, too large a At
led to incorrect wake shapes which were not sub-
stantiated on reduction of the time step. It was
found that for each thickness ratio of the wake
cross-section it was possible to find a value which
avoided these extremes over the first 32 steps.
For ¢ = .04, the appropriate at* for the first
32 steps was .0004, for & = .05 the value was
.0005 and, for ¢ = .06, the value was .0006. The
value found for ¢ = .06 was found to work well
for the non-elliptic loading case too, which is
not unexpected, since the initial rapid tip dis-
tortion should be fairly independent of the
form of the span loading.

For extending the calculation with ¢ = .06,
the time step was increased as described earlier
in Section 5. This process was checked from time
to time by covering a certain range both with the
original and with the increased time step and
seeing if the results for the wake form tallied
well enough. This was always found to be so with
the scheme described, although the vortex center-
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FIG. Sb CONFIGURATION AT t%:0.99999 - ELLIPTIC LOADING
w At this point it is necessary to comment on
§ yd the interpretation we give to the assemblage of
2 'Ot e points which results from the calculation at each
= o8 step. Evidently, a smooth curve drawn through the
z 908 points represents an approximation to the true
2 82_ wake shape, even though calculations of the velocity
g 03 —— MOORE field and center-of-gravity position are based on
W ) - 2‘_”5:‘“5 GVEN BY MOGRE) a system of rectilinear triangles joining the points.
z 02}% o c;:osl PRESENT RESULTS As the difference between the two representations
i < a €204) diverges, the accuracy of the velocity and center-
g o1 Y of~gravity calculations worsens, so that the curvi-
10 w0t ' ¢ linear shape is a less and less accurate repre-
FIG. 6 FRACTION OF VORTKCITY ROLLED UP AT (™ ELLPTC LOADING sentation of the true wake shape. However it is

of-gravity position worsened slightly faster with
the bigger time steps (see below), but not signifi-
cantly so. The same time~step scheme was used for
the non-elliptic load distribution without further
check.

All the initial roll-up calculations were
carried out with the 40 + 2 + 8 division, whereas
the extended calculations for e = .06, both with
elliptic loading and with non-elliptic loading
employed a 40 + 2 + 40 scheme. This was found
to be necessary in order to define the outer
spiral shape adequately.
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believed that the shape predicted is better than
is indicated by the spanwise center-of-gravity
position change which, for example, reaches 9.8%
of the original value (outwards) at t = .99999,
for the elliptic distribution (it is perhaps
significant that the center-of-gravity drifts con-
sistently outwards from the center line). This
belief is reinforced by the comparison with

Moores results given below. Complete verifi-
cation of this thesis could of course, only be
achieved by increasing the number of triangles to
approximate closer to the spiral shape at all stages .
Unfortunately this is impossible for practical
reasons.
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FIG. 7a  CONFIGURATION AT  t%0.74879
NON - ELLIPTIC  LOADING

In the initial-roll-up stage the curvilinear
and triangle representations are very close and
the center-of-gravity remains constant to within
one part in 780 or better,so we can have every
confidence in the results. As the calculation is
extended, however, the triangles in the center of
the roll-up begin to overlap one another and may
eventually change the cyclic order of their points.
Under these conditions no acceptable smooth curve
can be drawn and obviously the points have no
real meaning. However, the method of calculation
ensures that the vorticity is conserved under
all circumstances, so that, as far as the outer
spiral and other portions of the wake are concern-
ed, we simply have a "condensation® of vorticity
inside the spiral - rather analogous to Moore's
technique , so that the shape of these outer
portions is still accurate. Eventually, for t
around unity, some of the outer triangles overlap
too, due to the extreme stretching and shearing
which has taken place in the increasingly curved
mid-span portion of the wake; but by this time,
the triangles involved are those with a very small
fraction of the vorticity, (about 1% or less of the
total), so that the affgct on accuracy is not
serious until beyond t = 1.3.

In Figs. 4a and 4b, stages in the initial
roll-up for elliptic loading with ¢ = .06 are
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shown up to t* .019%. The corresponding pictures
for ¢ = .05 (up to t = .0160) and .04 (up to

t* .0128) are not shown, but they are very similar
except in the matter*of the number of turns in the
spiral at a given ¢t . Examination of the three
sets of results yields the following conclusions
concerning the effects of thickness ratio during

the initial roll=-up:

(1) Thickness has little effect on the amount of
vorticity within the core at a given t (Fig.6).

(2) Thickness has almost no effect on the §ize

of the rolled-up portion at a given ¢t .

(3) Except in the very early stages,the rolled-
up j o>rtion is of an approximately elliptic
shape with height/width ratio about 0.8 for

all three thicknesses.

*
The turns of the spiral at a given t increase
with decrease in ¢, except, again, for the

(4)

very-initial, %ll—defined phase., Thus, for
example, at t = .012 the number of turns is
about 1.6 for € = .04, 1.2 for € = .05 and
about 1 for € = .06.

In comprehending these results, and those that
follow, it may be observed that, if we take as
typical values CL = 0.5, AR = 8, then until ¢t
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FIG. 7b CONFIGURATION AT 1°-0.99999

NON - ELLIPTIC

corresponds to x/2s = 47, that is a downstream
movement of about 12.5 span lengths.

In Fig. 5a an early phase (t* .0192) in the
extended calculations for elliptic loading with
€ .06 is shown as a full half-span diagram with
equal horizontal and vertical scales. This,in
fact, represents the same state as the last picture
of Fig. 4b. Despite the difference in the number of
triangles used, there is no discernable difference
bstween them. 1In Fig. 5b the form of this wake at
t = .99999 is shown. This compares extremely well
in s%ze, shape and position with Moore's(4) spiral
at t = 1, except that the main part of the spiral
is very slightly shifted outboard.

in Fig. 6 the fraction of vorticity, rolled-up
at time t  is shown for all the present elliptic-
leading calculations and these are seen to compar?
favourably with the results of Moore(4) and Kaden L
(as quoted by Moore} - although the present results
are consistently higher for t” < .1 and are slight-
ly lower for t* > .1, 1t should be mentioned
that, as far as was practical with the present set-
up, Moore's definition of the fraction rolled-up
was adhered too. These results show that the two
major effects of continuous vorticity in a thick
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wake which cannot be adequately modeled by point
vortices - namely, thinning out of the vorticity

by stretching and redistribution of vorticity

per unit length of the wake cross-section by
internal shearing ~ come effectively into play

too late to affect the main parameters of the roll-

up.

The form of the wake for the non-elliptic
loading of equation (22) witg € .06 is shown at
three stages; e* .74879, t .99999 and

t* = 1.19997 in Figs. 7a,7b and 7c, respectively.

Although it appears at first as if the in-
board vortex is going to develop just as in
‘Reference 3, this process seems to be
increasingly inhibited by the shearing within the
wake thickness and the stretching of the bottom
part of the layer near the crucial station so that,
even though a "knob" of vorticity does develop, it
is subsequently suppressed and a secondary hump
forms further outboard. Calculations were carried
out beyond the stage shown in Fig. 7c¢ and show this
process to develop further but the later results
were deemed to be too inaccurate, so they are not
shown. Howevey, it is believed that the effects
demonstrated are qualitatively correct and are not
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simply numerical instabilities.

In conclusion, the relationship of the present
two-dimensional thick-wake model to a real three-
dimensional one, with axial velocity defect and
viscous and turbulent decay, will be discussed.

The effects of neglecting the three-dimensicnal
effects of wing bound vorticity and the finite up~
stream extent of the trailing vortices have been
described by Westwater 2), and will not be com-
mented on further here. If the boundary-layer shed
by the wing rolls-up with the wake, we would deduce
that the velocity defect would have almost no effect
on the present roll-up calculations, since the
vorticity due to it is normal to the free stream
direction and the wake is thin. There is, however,
some experimental evidence that the slower moving
fluid tends to gravitate towards the pressure sink
at the vortex center, so causing the outer part of
the spiral to be pushed outwards (see comment in
reference 12 on the r%sults of reference 14).
Cliffone and Ox:loff(l ) have shown that viscous

and turbulence effects are fairly small for down-
stream distances of 25 to 45 span lengths behind
the wing. This, coupled with the observed in-
sensitivity of our ellptic-loading calculations té
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thickness ratio (diffusion would tend to effectively
thicken the wake layer) and the fact that our
calculations cover, perhaps, 16 or 17 span lengths
at most, reinforces the conclusion that neglect

of viscosity is justified in the present work.
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